iterated Denoising Energy Matching for sampling from Boltzmann densities

Tara Akhound-Sadegh et al

paper presentation - arXiv:2402.06121

Chivintar Amenty, June 2025

TECHNICAL UNIVERSITY OF CRETE | SCHOOL OF ELECTRICAL AND COMPUTER ENGINEERING | MLDS MSC PROGRAM

Introduction

$$\mu_{\text{target}}(x) = \frac{\exp\left(-\mathcal{E}(x)\right)}{\mathcal{Z}}, \ \mathcal{Z} = \int_{\mathbb{R}^d} \exp\left(-\mathcal{E}(x)\right) dx.$$

- Boltzmann Probability Density
- Partition function Z: intractable
- Goal: sample from distribution μ only having access to Boltzmann energy

Motivation

$$\mu_{\text{target}}(x) = \frac{\exp\left(-\mathcal{E}(x)\right)}{\mathcal{Z}}, \ \mathcal{Z} = \int_{\mathbb{R}^d} \exp\left(-\mathcal{E}(x)\right) dx$$

- Statistical Physics
- Molecular Dynamics
- Protein Modeling
- Material Science
- Bayesian Inference in Astrophysics, Quantum Chromo-Dynamics and *many* more

Related Work

$$\mu_{\text{target}}(x) = \frac{\exp\left(-\mathcal{E}(x)\right)}{\mathcal{Z}}, \ \mathcal{Z} = \int_{\mathbb{R}^d} \exp\left(-\mathcal{E}(x)\right) dx.$$

- MC techniques: AIS, SMC
 - Computationally expensive
 - Slow convergence in HD spaces
- Simulation techniques
 - Scalability issues
- Diffusion Models
 - Need training data

iDEM introduction

- Neural sampler
- Diffusion-style
- Simulation-free (in inner loop)
- Computationally tractable
- Stochastic regression objective
- Diffusion sampled data
- Good coverage of all modes
- Imbues symmetries (SE(3) group)

iDEM introduction

Bi-Level algorithm

Inner loop

Optimizes score function

1. How, when we do not have samples from the distribution?

Outer loop

- Reverse SDE of score function
- Actual samples are generated

2. Where to get good samples?

$$\begin{split} & \nabla \log p_t(x_t) = \frac{\left((\nabla p_0) * \mathcal{N}(0, \sigma_t^2)\right)(x_t)}{p_t(x_t)} \\ & = \frac{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} [\nabla p_0(x_{0|t})]}{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} [\nabla p_0(x_{0|t})]} \\ & = \frac{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} [\nabla \exp(-\mathcal{E}(x_{0|t}))]}{\mathbb{E}_{x_{0|t} \sim \mathcal{N}(x_t, \sigma_t^2)} [\exp(-\mathcal{E}(x_{0|t}))]}, \quad \approx \frac{\frac{1}{K} \sum_i \nabla \exp(-\mathcal{E}(x_{0|t}^{(i)}))}{\frac{1}{K} \sum_i \exp(-\mathcal{E}(x_{0|t}^{(i)}))} \\ & = \mathcal{S}_K(x_t, t) \end{split}$$

$$x_{0|t}^{(1)}, \dots, x_{0|t}^{(K)} \sim \mathcal{N}(x_t, \sigma_t^2)$$

C1 – Inner Loop

C2 – Outer Loop

- With $s_{\theta}(x_t, t)$ frozen:
- Reverse time SDE
- Generate samples
- Store in replay buffer

Algorithm 1 ITERATED DENOISING ENERGY MATCHING **Input:** Network s_{θ} , Batch size b, Noise schedule σ_t^2 , Prior p_1 , Num. integration steps L, Replay buffer \mathcal{B} , Max Buffer Size $|\mathcal{B}|$, Num. MC samples K. while Outer-Loop do $\{x_1\}_{i=1}^b \sim p_1(x_1)$ $\{x_0\}_{i=1}^b \leftarrow \text{sde_int}(\{x_1\}_{i=1}^b, s_\theta, L) \{\text{Sample}\}$ $\mathcal{B} = (\mathcal{B} \cup \{x_0\}_{i=1}^b) \{ \text{Update Buffer } \mathcal{B} \}$ while Inner-Loop do $x_0 \leftarrow \mathcal{B}.sample()$ {Uniform sampling from \mathcal{B} } $t \sim \mathcal{U}(0,1), x_t \sim \mathcal{N}(x_0,\sigma_t^2)$ $\mathcal{L}_{\mathsf{DEM}}(x_t, t) = \|\mathcal{S}_K(x_t, t) - s_\theta(x_t, t)\|^2$ $\theta \leftarrow \text{Update}(\theta, \nabla_{\theta} \mathcal{L}_{\text{DFM}})$ end while end while output s_{θ}

iDEM algorithm

Algorithm 1 ITERATED DENOISING ENERGY MATCHING

Input: Network s_{θ} , Batch size b, Noise schedule σ_t^2 , Prior p_1 , Num. integration steps L, Replay buffer \mathcal{B} , Max Buffer Size $|\mathcal{B}|$, Num. MC samples K. while Outer-Loop do

$$\begin{cases} x_1 \}_{i=1}^b \sim p_1(x_1) \\ \{x_0\}_{i=1}^b \leftarrow \text{sde_int}(\{x_1\}_{i=1}^b, s_\theta, L) \text{ {Sample} } \\ \mathcal{B} = (\mathcal{B} \cup \{x_0\}_{i=1}^b) \text{ {Update Buffer }} \mathcal{B} \text{ {while Inner-Loop do}} \\ x_0 \leftarrow \mathcal{B}. \text{sample}() \text{ {Uniform sampling from }} \mathcal{B} \text{ {}} \\ t \sim \mathcal{U}(0, 1), x_t \sim \mathcal{N}(x_0, \sigma_t^2) \\ \mathcal{L}_{\text{DEM}}(x_t, t) = ||\mathcal{S}_K(x_t, t) - s_\theta(x_t, t)||^2 \\ \theta \leftarrow \text{Update}(\theta, \nabla_\theta \mathcal{L}_{\text{DEM}}) \\ \text{end while} \\ \text{end while} \\ \text{output } s_\theta \end{cases}$$

Evaluation on 4 tasks, 5 benchmarks

Evaluation on 4 tasks, 5 benchmarks 40-mode GMM

Evaluation on 4 tasks, 5 benchmarks Lennard-Jones 13, Lennard-Jones 55

Evaluation on 4 tasks, 5 benchmarks 4-particle double-well potential , LJ-13

Performance Results

- Negative Log Likelihood
- Effective Sample Size
- Wasserstein distance
- Efficient
- High quality samples

Algorithm \downarrow Dataset \rightarrow	GMM	DW-4	LJ-13	LJ-55
FAB (Midgley et al., 2023b)	1.71	6.87	21.78	40.35
PIS (Zhang & Chen, 2022)	4.11	11.29	17.36	*
DDS (Vargas et al., 2023)	1.81	5.65	*	*
pDEM (ours)	0.36	1.40	1.79	*
iDEM (ours)	0.87	4.30	6.55	7.75

Energy \rightarrow	$\operatorname{GMM}\left(d=2\right)$		DW-4 ($d = 8$)		LJ-13 ($d = 39$)		LJ-55 ($d = 165$)					
Algorithm \downarrow	NLL	ESS	\mathcal{W}_2	NLL	ESS	\mathcal{W}_2	NLL	ESS	\mathcal{W}_2	NLL	ESS	\mathcal{W}_2
FAB (Midgley et al., 2023b)	$7.14{\scriptstyle\pm0.01}$	0.653 ± 0.017	$12.0 {\pm} 5.73$	7.16±0.01	0.947 ±0.007	$2.15{\scriptstyle\pm0.02}$	17.52 ± 0.17	0.101 ± 0.059	$4.35{\scriptstyle\pm0.01}$	200.32 ± 62.3	0.063 ± 0.001	18.03 ± 1.21
PIS (Zhang & Chen, 2022)	$7.72{\scriptstyle \pm 0.03}$	0.295 ± 0.018	7.64 ± 0.92	$7.19{\scriptstyle \pm 0.01}$	0.901 ± 0.003	$2.13{\scriptstyle \pm 0.02}$	$47.05{\scriptstyle\pm12.46}$	0.004 ± 0.002	$4.67{\scriptstyle\pm0.11}$	*	*	*
DDS (Vargas et al., 2023)	$7.43{\scriptstyle \pm 0.46}$	0.687 ± 0.208	$9.31{\scriptstyle \pm 0.82}$	$11.27{\scriptstyle\pm1.24}$	0.408 ± 0.001	$2.15{\scriptstyle\pm0.04}$	*	*	*	*	*	*
pDEM (ours)	$7.10{\scriptstyle \pm 0.02}$	0.634 ± 0.084	$12.20{\scriptstyle\pm0.14}$	7.44 ± 0.05	0.547 ± 0.010	2.11 ± 0.03	$18.80{\scriptstyle \pm 0.48}$	0.044 ± 0.013	4.21 ± 0.06	*	*	*
iDEM (ours)	$6.96{\scriptstyle \pm 0.07}$	$\textbf{0.734} \pm 0.092$	$7.42{\scriptstyle \pm 3.44}$	$7.17{\scriptstyle\pm0.00}$	0.825 ± 0.002	$2.13{\scriptstyle \pm 0.04}$	$17.68{\scriptstyle \pm 0.14}$	0.231 ± 0.005	$\textbf{4.26}{\scriptstyle \pm 0.03}$	$125.86{\scriptstyle\pm18.03}$	$\textbf{0.106} \pm 0.022$	$16.128{\scriptstyle\pm0.071}$

Discussion & Future Work

- Consistent DEM objective
 - can it be biased still?
- reverse SDE: simulation step still
 - can it be replaced by a learned policy? RL-like or GFlowNets inspired methods?
- Molecule's energy is *really* complex (low temperatures, huge variations)
 - maybe flatten a little the energy landscape with more energy?
 - collect samples and then somehow simulate the trained model at lower temperature progressively until we reach the target temperature?

Conclusion & Acknowledgements

iDEM strong step forward:

- scalable
- symmetry-aware
- simulation-efficient sampling
- general
- extensible
 - Feynman-Kac Correctors, Schrodinger Bridges, Transition Matching . . .
- special thanks to the authors for their work and the code availability $\; o \;$

Tara Akhound-Sadegh*, Jarrid Rector-Brooks*, Avishek Joey Bose*, Sarthak Mittal, Pablo Lemos, Cheng-Hao Liu, Marcin Sendera, Siamak Ravanbakhsh, Gauthier Gidel, Yoshua Bengio, Nikolay Malkin, Alexander Tong

code

